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ABSTRACT 

This paper presents a method for dynamically assessing parametric variable importance and likely influence 

on performance objectives as a large, precomputed design space is filtered down to explore more specific 

problems. Custom parametric models coupled with performance simulation can support early design, but 

they can be inflexible and are not always created in practice due to time and other constraints. Large 

parametric datasets of previously simulated design subproblems could thus make performance-based 

modeling more accessible, but they can have too much information and fail to focus on supporting design 

decisions for specific variables and ranges. Using a parametric daylight room model as an example, we first 

train a linear model tree. As variable bounds are filtered and adjusted by a designer, remaining coefficients 

are interpolated to provide an adjusted variable importance for the new domain.    

Keywords: sensitivity analysis, design variable importance, reusable parametric models  

1 INTRODUCTION 

With the integration of simulation software into visual programming environments, parametric modeling 

and design space exploration are increasingly used in early building design. Despite their limitations, 

parametric models can explore a range of options within an initial design concept, highlighting performance 

trends or tradeoffs when the concept is still flexible. Many design approaches have been proposed at this 

stage, including design catalogues (Brown and Mueller 2017), interactive and automated exploration 

(Ferrara et al. 2014), and machine learning for visualization (Wortmann 2017; Danhaive and Mueller 2021). 

However, generating a custom parametric model is time-consuming, and there can be considerable 

uncertainty in the design variables, simulation settings, and metrics, even if the problem is simplified. Thus, 

a practical barrier is a potential mismatch between what information designers want out of a parametric 

model and when a model is able to supply it. Design practice moves fast, and tools can get left behind if 

they do not provide salient information of useful accuracy at the right time. Even with newly available 

tools, there remains a need for fast feedback and guidance on the key early design decisions that impact 

performance (Bambardekar and Poerschke 2009). 

Researchers have worked to create design models for repeated use. Ideally, these large models contain many 

variables and configurations, but could be filtered down to provide useful feedback for a given problem. 

For these models, machine learning can predict performance for a new design based on existing simulation 

mailto:luh183,
mailto:gxp93,
mailto:ncb5048%7D@psu.edu
mailto:lelandcurtis88@gmail.com


Hinkle, Pavlak, Curtis, and Brown 

   

 

data. Yet while a general model is easier to reuse, it likely gives lower resolution feedback for early 

geometric, material, or other design decisions. As such, many designers might prefer to simply use a general 

parametric model to discover which variables tend to “matter” in terms of performance—how likely they 

are to improve metrics, and where good settings tend to be—before modifying the design outside a 

restrictive parametric framework. This information must respond to customization of a large dataset to the 

specific design project, which may only include a subset of variable settings.  

The task of determining variable importance and providing information about performance response is a 

type of sensitivity analysis. In architecture and engineering, a dynamically adjustable sensitivity analysis 

may be a form of feedback that, while lower resolution than accurate performance prediction, may match 

the speed of design and make parametric simulation more widespread in practice. Sensitivity analysis helps 

identify and prioritize significant model inputs, enabling designers to focus on key decisions before the 

design approach consolidates around a sub-optimal, or even counter-productive, strategy. It can also point 

designers in the right direction for specific model settings. Yet a traditional design space sensitivity analysis 

might still require building a custom parametric model for a problem, running an analysis of variable 

importance, adjusting the model as design criteria emerges, and re-running the analysis.  

In response, this paper presents a new approach called dynamic subset sensitivity analysis for common 

early design problems. Examples of recurring design problems that could be modeled and reused for many 

projects, as long as variables can be restricted or eliminated, include a daylit room, shoebox energy 

calculation, or structural framing layout. In this approach, a general design space is first established through 

parametric simulation. Next, machine learning is used to train a linear model tree with a structure that 

enables repeated filtering of variable ranges and rapid recalculation of variable importance and sensitivity. 

Finally, visualizations of each calculation give immediate information on the relationship between design 

drivers and performance metrics as bounds are adjusted. This process is explained and tested on a room 

daylight model. The ultimate goal is to develop an interactive tool that tracks with the speed of design and 

while providing multi-resolution sensitivity information. The desired outcome is greater participation by 

architects and consultants in performance-driven tools, leading to better performing buildings. 

2 LITERATURE REVIEW  

This section explains relevant background literature in machine learning and sensitivity analysis (SA) for 

building design, construction, and operation. SA can help with decisions by explaining how the uncertainty 

in the response can be allocated to uncertainties in the variables. It has been used most often to support 

model calibration (Yang et al. 2016) or decision-making in design and operation (Brembilla, Hopfe, and 

Mardaljevic 2018; Samuelson et al. 2016; Brown and Mueller 2019), often attempting to find the most 

influential variables. This paper focuses on decision-making. If a design variable is highly influential to the 

performance response, it is considered a critical decision and may require multi-disciplinary input. On the 

other hand, if the variable is less influential to the response, it is more flexible and a lower priority.  

Several SA approaches have been applied to building performance problems with the goal of computing 

variable ranking, degree of importance, or interactions (Nguyen and Reiter 2015). These include one-at-a-

time (OAT), screening, regression-based, and variance-based approaches. While OAT methods are suitable 

for other fields, they are not recommended for building performance analysis due to the possible nonline-

arity of building systems (Pang et al. 2020). Meanwhile, screening methods such as global OAT and Morris 

method capture nonlinear effects and have been used to address a broad range of problems, ranging from 

improving building life cycle assessment (Pannier, Schalbart, and Peuportier 2018) to thermal comfort (De 

Wit and Augenbroe 2002). Regression-based methods are straightforward, using standardized regression 

coefficients as variable importance. Some energy model researchers have demonstrated regression-based 

variable selection procedures such as stepwise regression (Arababadi et al. 2015). The main drawback of 
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linear regression is the linearity condition, which may not be satisfied depending on the building system. 

Finally, variance-based approaches tend to achieve higher accuracy at a computational cost.  

These methods compute influence over the entire variable domain. As the design space, or variables’ do-

main, is refined during early design, the initial SA may no longer be accurate. Some researchers approached 

this issue by retraining the underlying regression model on the restricted variable domain (Gao, Mae, and 

Taniguchi 2020). However, depending on how the domain is restricted, predictions are not consistently 

accurate; there may be few remaining training points or the data behaves differently in the specified region. 

Most importantly, retraining may cause a lag which is disruptive to the decision-making process. Another 

approach is to leverage information from the original model and filter based on design criteria. Regional 

sensitivity analysis (RSA) identifies regions in the design space corresponding to particular values of the 

response. This method has been demonstrated on building energy models (Østergård, Jensen, and Maagaard 

2017b; 2017a). However, the analysis was based on an idealized model rather than detailed BPS software 

and required additional evaluations in limited subsets. Nevertheless, filtering is a valuable design space 

exploration technique, especially as reusable parametric models emerge as a new research area. 

With many existing methods, it is still difficult to quickly and accurately update variable importance as the 

design is refined. Implications on the design process are also unclear. We thus propose dynamic subset 

sensitivity analysis for common design problems, as well as potential visualizations and inferences that 

attempt to provide conceptual designers with useful information throughout the process.  

3 METHODS 

The main process demonstrated in this paper involves leveraging variable sensitivity in regions determined 

by a regression tree to quickly return variable information without full model retraining. The overall 

research procedure is shown in Figure 1. First, a common building design problem was selected and 

parameterized. Data was generated using a visual programming environment and then used to train a linear 

model tree. Two additional models were trained, multiple linear regression and traditional regression trees, 

to evaluate the accuracy of the linear model tree. Next, the variable domains were binned, and a weighted 

average method was employed to indicate where in the variable range certain variables tended to have a 

large influence on the response. Finally, variable sensitivity was updated through a new subset sensitivity 

analysis method that involves interpolating linear model tree leaves as the design space is filtered. Several 

design scenarios are used to demonstrate the new dynamic subset sensitivity analysis method. 

 

Figure 1: Overall methodology 

This paper envisions a future dynamic interface shown in Figure 2. This interface would allow a designer 

to explore the initial sensitivity analysis across all variable ranges, dynamically adjust the bounds to match 

their problem, and even select individual variables to view the constituent leaf models that form the basis 

of the sensitivity visualizations. As an example, the mock-up in Figure 2 shows an initial sensitivity 

analysis, dynamic subset sensitivity analysis, and detailed sensitivity analysis in terms of the variable panel 
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width. The dynamic subset sensitivity analysis shows updated feature importance based on the adjusted 

bounds and a selected available design. Further details about each component are provided in the results.  

 

Figure 2: Potential tool interface based on the method for dynamic subset sensitivity analysis 

3.1 Problem Selection and Parametrization 

A single room model was selected to demonstrate the method due to its repeated use in practice. The 

ubiquity of room models in the United States stems from the simulations required to obtain LEED v4 

Daylight credits. Significant efforts are made to model and simulate daylight in qualifying spaces. The 

daylight room model was modeled parametrically in Grasshopper. The surface properties were assigned 

according to LM-83 guidelines, and a typical double-pane low-e window was selected with 61% visible 

transmittance. The automated shade fabric has 7.2% visible transmittance and 6.6% permeability. The room 

width and height were held constant at 9 m and 3 m, respectively. The design space consisted of nine 

variables: room depth, sill height, head height, orientation, context distance, context height, number of 

panels, panel width, and wall thickness (Figure 3). The upper and lower bounds were chosen to provide 

enough flexibility for repeated use within modern construction standards. The dataset is intuitive and fairly 

linear, although additional repeated early design problems could be explored in the future. 

 

Figure 3: Common design space: daylight room on building facade 

3.2 Data Generation 

To create the general dataset, spatial daylight autonomy (sDA) at 300 lux was simulated using 

ClimateStudio in Grasshopper. The sensor spacing was 1 m and the workplane was positioned 0.762 m 

above floor finish. Within the path-tracing settings, the number of rays emitted for each sensor at each pass 

was 500. The Radiance parameters considered up to 6 ambient bounds before discarding a ray. The design 

space was sampled at 𝑁 =12,500 using Latin Hypercube sampling. Simulations were conducted in 



Hinkle, Pavlak, Curtis, and Brown 

   

 

Pittsburgh, PA, and Phoenix, AZ, to yield two individual datasets. The Pittsburgh sky is often overcast, 

while Phoenix is typically clear, and they are located at different latitudes. In the results section, variable 

sensitivities are compared through different potential design paths for both cities. Before training the linear 

model tree, the datasets were split 80/20 for training and testing. All variables were normalized from 0-1. 

3.3 Leveraging Linear Model Trees 

The next step is to create regression trees for the datasets. They are built through recursive binary splitting, 

where predictor 𝑋𝑗 is split at cutpoint 𝑠 such that splitting the predictor space into the regions {𝑋 | 𝑋𝑗 < 𝑠} 

and {𝑋 | 𝑋𝑗 ≥ 𝑠} leads to the greatest reduction in the residual sum of squares (RSS) in equation (1). 

Splitting stops based on some threshold and each terminal node, or leaf, contains a model that applies in 

the 𝑗-th region only. For traditional regression trees, the estimated response �̂�𝑅𝑗
 is the mean response for 

the training observations in the 𝑗-th region. However, this is often an over-simplification of the true 

relationships. To address this issue, linear model trees use a linear model to estimate the response. By the 

end of the training process, each leaf node contains its own linear model. 

𝑅𝑆𝑆 = ∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗
)2

𝑖∈𝑅𝑗
,𝐽

𝑗=1                                                          
(1)

 

where the outer summation accounts for each variable and the inner summation accounts for all points in 

the specified region. While previous studies have achieved high accuracy with nonparametric models, it is 

often not possible to make inferences and inform the building design process. It was hypothesized that 

linear model trees achieve sufficient accuracy for early design while allowing for dynamic interpretations 

about variable sensitivity because of how they are constructed.  

The hyperparameters for a linear model tree are the maximum depth and minimum number of samples per 

leaf, which have to be tuned for a given dataset. For this application, the maximum depth was set to 8 and 

minimum number of samples per leaf was set to 30. At this depth, the model achieved sufficient accuracy, 

and enforcing at least 30 points per leaf ensured the model was valid. Once the linear model tree was built, 

the leaves were used to compute average sensitivity in small bins.  

3.3.1 Compute Average Variable Sensitivity  

The next step is to determine how coefficients of individual leaves should be combined to indicate variable 

importance. To get a sense of sensitivity over the entire variables’ domain, the average linear model 

coefficient was computed in small bins. The domain of each variable 𝑋𝑗 is partitioned into 100 bins of equal 

length. The 𝑚-th bin is denoted by 𝑏𝑚 ≔  [
𝑚−1

100
,

𝑚

100
), for 1 ≤ 𝑚 ≤ 100. The 𝑘-th leaf is denoted by ℓ𝑘 

and the number of samples in ℓ𝑘 is 𝑛𝑘. Then, the domain of each variable 𝑋𝑗 is constrained by 𝑐𝑗,𝑘 ≤ 𝑋𝑗 ≤

𝑑𝑗,𝑘 in leaf ℓ𝑘. Let 𝜃𝑗,𝑘 be the original coefficient of 𝑋𝑗 in ℓ𝑘. Then the weighted coefficient restricted to 

bin 𝑏𝑗,𝑚 is shown by  𝜃𝑗,𝑘,𝑚 and is given by the equation (2). 

 𝜃𝑗,𝑘,𝑚 = 𝜃𝑗,𝑘 ∗  
𝑛𝑘

𝑛(𝑏𝑗,𝑚)
,                                                            

(2)
 

where 𝑛(𝑏𝑗,𝑚) is the number of samples that lie in 𝑏𝑗,𝑚  for 𝑋𝑗  over all leaves. Finally, the weighted 

coefficient for variable 𝑋𝑗 in 𝑏𝑚 is given by equation (3). 

 𝜃𝑗,𝑚 = ∑  𝜃𝑗,𝑘,𝑚𝑘                                                                 
(3)

 

The result is a local sensitivity analysis over the entire domain that can be used to understand changes in 

the response. Next, the model leaves are used to update variable importance for user-defined intervals. 
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3.3.2 Interpolate Leaves as Design Space is Filtered 

While many data models can return importance metrics, they are often established through training, 

requiring retraining if the variables and their corresponding bounds are modified. By precomputing linear 

models in regions determined by the regression tree, the model coefficients can be interpolated to quickly 

return variable information without full model retraining. If the user-defined intervals correspond exactly 

to a pre-defined region, variable sensitivity is provided by that model. Otherwise, the model coefficients 

must be interpolated based on the “agreement” between the user-defined intervals and the variable domains 

in the leaves. The agreement of the user restricted intervals with the constraints of ℓ𝑘 is given by equation 

(4). 

�̃�𝑘 = (∑ 𝑤𝑘,𝑗

1

𝑝𝐽
𝑗=1 )

𝑝

,                                                             
(4)

 

where 𝑤𝑘,𝑗  is the amount of “agreement” of 𝑋𝑗  in ℓ𝑘  and 𝑝 > 1 is a hyperparameter. Let [𝑎𝑗, 𝑏𝑗] be the 

user-defined interval on 𝑋𝑗. Then, the amount of agreement 𝑤𝑘,𝑗 is defined as equation (5). 

𝑤𝑘,𝑗 =  
min{d𝑗,𝑘,𝑏𝑗}−max{c𝑗,𝑘,𝑎𝑗}

𝑏𝑗−𝑎𝑗
                                                    

(5)
 

Without loss of generality, assume �̃�1, �̃�2, . . . , �̃�𝑡  are the top 𝑡  agreements. The total weight 𝑤𝑘  is a 

function of top 𝑡 agreements normalized by their sum as equation (6). 

𝑤𝑘 =
�̃�𝑘

∑ �̃�𝑘
𝑡
𝑘=1

                                                                   
(6)

 

Finally, variable importance was computed using the equation (7).  

�̂� = ∑ 𝑤𝑘 ⋅ 𝑎𝑏𝑠(𝜽𝑘),𝑡
𝑘=1                                                         

(7)
 

where 𝜽𝑘 is the linear model coefficients at ℓ𝑘, and 𝑎𝑏𝑠(⋅) is element-wise absolute value of a vector. Note 

that 𝑝 and 𝑡 are hyperparameters that can be tuned based on the dataset. For this dataset, 𝑝 and 𝑡 were set 

to 3 and 10, respectively. For higher values of 𝑝, the contrast between the top 𝑡 agreements becomes 

sharper. As 𝑡  approaches the total number of leaves, the impact of individual leaves gets lost due to 

normalization. On the other hand, if 𝑡 = 1, only one leaf is used, which might not be an accurate model of 

the user-defined region. Once the intervals are specified, individual predictions are made with the linear 

model tree itself. Single designs only fall into one leaf, since the regions do not overlap. The prediction is 

made by the linear model in the appropriate leaf. Once this model has been established, a metric for overall 

variable importance and visualizations of how performance changes with variable setting modifications can 

both be returned to a designer without the added time of model retraining. The results section first presents 

the dataset itself before showing these potential visualizations for the designer.  

4 RESULTS AND DISCUSSION 

4.1 Model Comparison 

Before performing computations with leaf model coefficients, the linear model tree fit was assessed to 

ensure sufficient demonstration of the method. Additionally, a multiple linear regression model and 

traditional regression tree were trained to evaluate performance. Figure 4 shows the simulated response 

versus the predicted response for each model in Pittsburgh and Phoenix. The response for this dataset is 

sDA, which is a percentage, so the values range from 0 to 1. Although the multiple linear regression model 

and traditional regression tree make accurate predictions for low sDA values, the overall fit is poor. It is 
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clear that implementing a linear model tree captures nonlinearity in the data thus improving the accuracy 

of the model. An important assumption of linear regression is that the variables are independent. For both 

the Pittsburgh and Phoenix datasets, all Pearson correlation coefficients were less than 0.02. This indicates 

that the variables are indeed independent. 

 

Figure 4: Interpretable model comparison, Pittsburgh (upper) and Phoenix (lower) 

4.2 Coefficients Over Variable Domain 

After building these models, the average coefficients for each variable were plotted over their domains. 

Such visualizations could be directly useful for designers, but they contain similar information to later 

figures. While many variables maintain a constant coefficient over their domain, some show noteworthy 

changes. In Figure 5, the gray line is the coefficient from the multiple linear regression model, and the 

orange line is the result from the procedure described in 3.3.1. On average among the leaf models, panel 

width does not significantly affect sDA until it reaches ~0.50 m. This means that designers can freely choose 

within 0.10-0.50 m without affecting sDA. The Phoenix graph for panel width shows the coefficient 

increases more gradually. Similarly, it is not likely changing panel width within this range will greatly 

affect sDA. The other variable showing substantial changes over its domain is room depth. For both 

Pittsburgh and Phoenix, room depth greatly influences sDA until it reaches approximately 8.7 m. This 

information is potentially useful while designing floorplans; for deep rooms, other variables must be 

adjusted to reach sDA targets. 

Figure 6 presents the same data in terms of coefficient magnitude. This visualization shows at which point 

the variables’ relationship with the response changes. Many variables’ magnitudes are constant, and in 

terms of design, these variables hold the same importance throughout. This dataset was selected for its 

interpretability to demonstrate the method, however, these visualizations may reveal less intuitive changes 

for highly non-linear data. Since these results demonstrated similar trends for Pittsburgh and Phoenix, the 

following sections present results in terms of the Pittsburgh dataset. 
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Figure 5: Coefficients on average over entire domain, Pittsburgh (left) and Phoenix (right) 

 

Figure 6: Magnitude of coefficients on average over entire domain, Pittsburgh (left) and Phoenix (right) 

4.3 Dynamic Subset Sensitivity Analysis 

Data-driven parametric design often involves setting variable domains, generating data, and fitting a 

prediction model. As the design is refined, variable domains are narrowed until one value is ultimately 

selected. Previously, the prediction model needed to be re-trained on the subset of data to provide accurate 

variable importance and support decisions. We achieve subset sensitivity analysis by precomputing linear 

regression models in regions determined by the tree and then interpolating between regions to estimate the 

variable importance in the subset. Four examples are shown in Figure 7, which includes a slider for each 

variable, the user-defined intervals, and variable importance, presenting a potential visualization for a 

design tool. The images on the right represent three potential designs in the subset: variable lower bounds 

on the left, variable middle values in the middle, and variable upper bounds on the right. It is important to 

note that a series of visualizations presented to the designer should show both (1) which variables deserve 

attention (by virtue of producing a large effect on performance, regardless of direction) and (2) how such 

variables tend to affect performance along their domains (where the variable makes the performance trend 
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up or down). There is some loss of precision due to the averaging in the simpler graphics, but the intention 

is rapid feedback for designers that can be explored in more detail if desired. 

 

Figure 7: Filtering the Pittsburgh dataset 

Design scenario 1 represents typical values, eliminating the extremes. The importances are similar to those 

of the full dataset. In design scenario 2, room depth is shallow, the context building is between 4.50 and 

11.25 m tall, and the exterior wall is between 0.20 and 0.44 m thick. Because lower values of room depth 

and wall thickness significantly affect sDA, their importances increase. Additionally, due to the inclusion 

of both south and north orientations in this scenario, orientation became more important than context 

distance and context height. For design scenario 3, room depth is deeper, sill height is higher, the room 

faces between northwest and south, there are fewer panels, but higher panel widths, and the wall thickness 

is heavily restricted. With the number of panels limited, panel width is most important. Head height also 

became the third most important variable. Lastly, in design scenario 4, three values are already known and 

set to specific values. With these variables eliminated, room depth and panel width are most important. 

Although this dataset is fairly linear, these examples of dynamic subset sensitivity analysis begin to show 

how refining the variable domain affects variable importance and ultimately design decisions.  

While the images above can alert the designer to overall importance and how it changes as variables are 

restricted, the dynamic subset sensitivity analysis visualizations above do not capture the sign of the 

coefficient or slope. In some cases, it may be useful to understand the relationships between the variables 

and the response on a more granular level. For a closer look, Figure 8 shows heatmaps where each row is a 



Hinkle, Pavlak, Curtis, and Brown 

   

 

leaf model and the color of the cell represents the coefficient. The heatmap on the left shows all 144 leaf 

models that make up the linear model tree. The heatmap on the right shows the remaining available leaf 

models when the dataset is filtered based on design scenario 1. 77 leaf models intersect the user-defined 

intervals. In comparing the two graphs, it is possible to see how areas of significant variable influence 

change as the bounds are restricted. For example, many leaves with a high negative coefficient for room 

depth are excluded after restricting the bounds. Also, several leaf models with high positive coefficients for 

panel width are also excluded when extreme values are taken out of the domains.  

 

Figure 8: Filtering the Pittsburgh dataset based on design scenario 1 

If this visualization were incorporated into a tool, the user could expand one variable to display the domain 

for each leaf model to help communicate relationships among variables, which can get lost in the simpler 

graphics. Figure 9 provides two examples, a and b, to demonstrate how this visualization tool could work. 

In example a, panel width’s domain spans from ~0.65-0.90 and it has a moderately strong positive linear 

relationship with sDA. Under the assumption that panel width is 0.65-0.90, room depth has a highly 

negative linear relationship with sDA. However, in example b, the domain of panel width is expanded to 

~0.45-0.90, and in this case, the negative linear relationship between room depth and sDA is weaker, but 

orientation has a strongly positive linear relationship to sDA. These examples show how a specific 

relationship with the response can be achieved by adjusting the domain of multiple variables. 

5 CONCLUSION AND FUTURE WORK 

In this work, we introduced a new way of thinking about sensitivity analysis dynamically in early design 

and presented methods to support it. Subset sensitivity analysis for common early design problems allows 

designers to discover which variables tend to matter for performance before modifying the design outside 

a restrictive parametric framework. While traditional sensitivity analysis requires building a custom 

parametric model, running variable importance analysis, adjusting the model as design criteria emerges, 

and re-running the analysis, dynamic subset sensitivity analysis provides designers variable sensitivity 

feedback in real-time as design criteria emerges. However, if the common design problem data is highly 
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nonlinear, the linear model tree model may not be able to build regions with high enough accuracy. In future 

work, other building performance datasets will be tested to demonstrate robustness. Dynamic subset 

sensitivity analysis tracks with design to make the greatest impact without generating a custom parametric 

model for each project.  

 

Figure 9: Expanding one variable to understand domain in leaves 
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