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ABSTRACT
This paper proposes MPC-CDCEM, a model-based reinforcement
algorithm (RL) that allows the agent to safely interact with the en-
vironment and explore without additional assumptions on system
dynamics. The algorithm uses a Model Predictive Control (MPC)
framework with a differentiable cross-entropy optimizer, which
induces a differentiable policy that considers the constraints while
addressing the objective mismatch problem in model-based RL al-
gorithms. We evaluate our algorithm in Safety Gym environments
and on a practical building energy optimization problem. In addi-
tion, we showed that in both experiments, our algorithms have the
lowest number of constraint violations and achieve comparable
rewards compared to baseline constrained RL algorithms.
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1 INTRODUCTION
In recent years, reinforcement learning (RL) has shown exceptional
success in various automated control and decision-making tasks.
The RL algorithm can automatically learn a policy that satisfies the
specified objective. However, current RL algorithms often require
millions of interactions with the environment, which results in an
expensive training process and primarily limits their application
to simulated domains [38, 39]. In addition, transferring policies
learned in a simulation environment has proven to be challenging
due to model uncertainties [12, 43] and mismatch between real and
simulated observations.
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In many real-world applications, safety considerations also pre-
vent the agent from freely exploring the environment. For example,
a self-driving agent cannot take any actions that could cause harm
to pedestrians while learning to optimize its driving policies. The
agent needs to be constrained to specific actions that do not vio-
late the safety requirements. In general, it is usually non-trivial to
transform constrained optimal control problems into unconstrained
problems [45].

One common approach to addressing this issue is to enforce
some operational constraints on the outputs of a machine learning
algorithm. However, usually, these constraints are not enforced
during the training process and can potentially negatively impact
the overall performance of the system [9].

Other approaches have sought to develop constrained and pol-
icy gradient-based safe RL algorithms, however, current methods
cannot guarantee strict feasibility of policies even when initialized
with feasible initial policies [27]. This limitation precludes their use
in safety-critical environments.

A third approach has generated RL algorithms that transform the
reward optimization criteria into a combination of reward and con-
straint violation cost, however, such methods suffer when the task
objective and safety objectives contradict each other [45]. In addi-
tion, learning the dynamics of the environment and black box cost
function typically is very difficult, especially in high dimensional
space [34].

The work in this paper is inspired by recent results applying the
differentiable cross-entropy method (DCEM) [6], and we propose
a new safe reinforcement learning algorithm we name the Con-
strained Model Predictive Differentiable Cross-Entropy Method
(MPC-CDCEM) that builds upon the success of DCEM. In each iter-
ation, the algorithm samples from the distribution of policies and
selects a set of trajectories with the best objective values that sat-
isfy constraint values. If there are not enough feasible trajectories,
the algorithm uses trajectories with the best constraint satisfac-
tion performance. Compared to similar proposed solutions that
use the traditional cross-entropy method [45], using the differen-
tiable cross-entropy method enables an end-to-end learning process
for both optimizing the objective and learning system dynamics.
The differentiable policy class parametrized by the model-based
components is a solution to the objective mismatch problem in
model-based control [25], which arises when the objective being
optimized is different from a target, often uncorrelated metric that
we wish to optimize. In the context of model-based reinforcement
learning, the model that achieves better performance in one-step
ahead prediction of system dynamics is not necessary better for
control. Another benefit of a differentiable policy is that it allows
us to learn a low dimensional latent action space. Learning lower
dimensional latent space of reasonable candidates enables the pol-
icy to leverage spatial and temporal structure in the solution space
of optimal action sequence and ignore irrelevant action sequences.
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The contributions of this paper are as follows. First, we present
a model-based constrained RL algorithm in continuous state and
action spaces. We formulate the problem under the Constrained
Markov Decision Process [4] framework with minimal additional
assumptions on system dynamics and constraint function. The
differentiable cross-entropy method induces a differential control
policy that addresses the objective mismatch problem in model-
based control problems. We show that our approach can achieve
state-of-the-art performance in terms of constraint violation num-
ber and accumulated expected return on Safety Control Gym [46].
We also explore a microgrid energy management system to reduce
energy consumption while ensuring thermal comfort satisfaction
for occupants and equipment safety by preventing excessive cycling
in chillers.

2 RELATEDWORK
Our approach relies on recent developments in differentiable cross-
entropy methods and is thematically similar to several recent works
[27, 45]. Here we discuss these topics and refer the interested reader
to [20] for a more comprehensive review of safe RL topics.

[20] considers two main approaches to safe RL. The first is based
on modifying the optimality criterion to introduce the concept
of risk, and the second modifies the exploration process to avoid
actions that can lead to undesirable or catastrophic situations. Re-
garding the first approach, optimization-based methods can be
further categorized as worst-case criterion [32, 41], risk-sensitive
criterion [7, 8, 23], constrained criterion [4, 24, 30], and other op-
timization criteria such as r-squared value-at-risk (Var) [28], or
density of return [31]

Regarding the second approach, in general, there are two main
ways of modifying the exploration process. Prior knowledge can be
incorporated into the exploration process [1, 19, 36, 42], and risk
measures can be added to determine the probability of selecting an
action during the exploration process [21, 26].

In this work, we focus on the constrained Markov decision pro-
cess formulation for safe RL [4]. [44] proposed a projection-based
constrained policy gradient method that relies on projected gradi-
ents to ensure feasibility. [2] proposed a model-free constrained op-
timization method based on trust-region methods. However, these
methods suffer from errors in gradient and Hessian matrix estima-
tion, which may lead to underperformance [45]. [3, 40] proposed
Lagrangian methods that use adaptive penalty coefficients to ensure
constraint feasibility, which requires target constraint violations to
be set in advance.

Several papers proposed a safe RL algorithm that uses a model-
based learning framework. Model-based approaches often produce
more sample-efficient control solutions while ensuring constraint
feasibility [18, 35]. [16] proposed a method that combines model-
free control with a model-based safety check to ensure action feasi-
bility. [10, 11] proposed a Lyapunov-based approach that provides
an effective way to guarantee global safety during training via a set
of local, linear constraints. [15] extended PILCO [17] model based
algorithm to enable active exploration using a metric for out-of-
sample Gaussian Process that supports conditional-value-at-risk
constraints.

The cross-entropy method (CEM) is a zeroth-order optimizer,
which works by generating a sequence of samples from the objec-
tive function [37]. In recent works, CEM has shown state-of-the-art
performance for solving a control optimization problem with neu-
ral network transition dynamics [13, 22]. Recently, [6] proposed a
method to approximate the derivative through an unconstrained,
non-convex, and continuous optimization process. The differen-
tiable cross-entropy method allows us to embed action sequences in
a lower-dimensional space. It induces a differentiable control policy
that solves the objective mismatch problem in model-based con-
trol. [27, 45] proposed constrained cross-entropy methods that only
select elite trajectories that satisfy constraint satisfaction criteria.

In this paper, we propose a constrained differentiable cross-
entropymethod (CDCEM) that effectively solves large safety-critical
optimization problems in lower-dimensional latent space. In con-
trast to previous safe model-based algorithms, our algorithm in-
duces a differentiable policy that can address objective mismatch
problem by using the gradient information from a policy function
and fine-tune controller components such as transition model or
the cost model. In addition, backpropagating across all sampled
trajectories is memory intensive and intractable in most practical
problems; hence, this is only possible in lower-dimensional embed-
ded action space [6].

3 PRELIMINARIES
3.1 Constrained Markov Decision Process
A Markov decision process (MDP) is defined as (S,A,R,P, 𝜇)
where S is set of states,A is a set of actions, R : S×A×S → R is
the reward function, P : S ×A → D(S) is the transition function
and 𝜇 ∈ D(S) is an initial state distribution. Let Π : S → D(S)
be set of all stationary policies.

The objective of reinforcement learning is to select a policy that
maximizes the discounted expected return

𝐽 (𝜋) = E𝜏∼𝜋 [
𝐻∑
𝑡=1

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)]

where 𝛾 ∈ [0, 1) is the discount factor. Given a finite horizon 𝐻 , a
𝐻 -step trajectory is sequence of 𝐻 state-action pairs. 𝜏 represents
a trajectory (𝜏 = 𝑠1, 𝑎1, . . . , 𝑠𝐻 , 𝑎𝐻 ) and 𝜏 ∼ 𝜋 is distribution over
trajectories.

A constrained Markov decision process (CMDP) [4] is an MDP
with constraints that restrict the set of allowable policies over that
MDP. The set of cost functions 𝐶𝑖 : 𝑆 ×𝐴 × 𝑆 → R mapping tran-
sition tuple to real valued cost and limits 𝑑1, . . . , 𝑑𝑛 . The expected
discounted return 𝐽𝐶𝑖

(𝜋) = E𝜏∼𝜋 [
∑𝐻
𝑡=1 𝛾

𝑡𝐶𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)] with re-
spect to cost function 𝐶𝑖 . The set of feasible stationary policies for
CMDP is then:

Π𝐶 = 𝜋 ∈ Π : ∀𝑖, 𝐽𝐶𝑖
(𝜋) ≤ 𝑑𝑖

and the solution to CMDP is:

𝜋∗ = argmax
𝜋 ∈Π𝐶

𝐽 (𝜋)
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3.2 Differentiable Constrained Cross-Entropy
Method

The cross-entropy method (CEM) [37] is a zeroth-order optimiza-
tion approach in the form of 𝑥 := argmin𝑥 𝑓𝜃 (𝑥). CEM is an iterative
solver which uses a sequence sampling distributions 𝑔𝜙 ∈ R𝑛 . In
each iteration 𝑁 candidate points are sampled from the domain
[𝑋𝑡,𝑖 ]𝑁𝑖=1 ∼ 𝑔𝜙𝑡

(·), evaluated using 𝑣𝑡,𝑖 := 𝑓𝜃 (𝑋𝑡,𝑖 ) and 𝑘 elite can-
didates are selected to fit the new sampling distribution by solving
the maximum-likelihood problem:

𝜙𝑡+1 := argmax
𝜙

∑
𝑖

1{𝑣𝑡,𝑖 ≤ 𝜋 (𝑣𝑡 )𝑘 } log𝑔𝜙 (𝑋𝑡,𝑖 ) (1)

The top-𝑘 operation in Equation (1)makes the𝑥 non-differentiable
with respect to 𝜃 . The top-𝑘 operation can be made differentiable
using a Multi-Label Projection (LML) layer [5].

4 APPROACH
4.1 Problem Formulation
Here we use Model Predictive Control (MPC) for our model-based
RL approach for controlling discrete-time dynamical systems with
continuous action-space, which allows our agent to adapt its plan
based on new observations.

LetA𝐻 be the space of control sequences over controller horizon
length 𝐻 . The goal is to learn a latent action spaceZ with parame-
terized decoder 𝑓 𝑑𝑒𝑐

𝜃
: Z → A𝐻 . For a special case of Constrained

Markov Decision Process we aim to repeatedly solve the following
optimization problem:

𝑧 := 𝐽𝜃 (𝑧; 𝑠𝑖𝑛𝑖𝑡 ) := argmax
𝑧∈Z

𝐻∑
𝑡=1

𝐽𝜃 (𝑎𝑡 ; 𝑠𝑡 )

subject to 𝑠1 = 𝑠𝑖𝑛𝑖𝑡

𝑠𝑡+1 = 𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠𝑡 , 𝑎𝑡 )

𝑎1:𝐻 = 𝑓 𝑑𝑒𝑐
𝜃
(𝑧)

𝑐 (𝑠𝑡+1) = 0

(2)

where 𝑠𝑖𝑛𝑖𝑡 is the initial system state governed by deterministic
system transition dynamics 𝑓 𝑡𝑟𝑎𝑛𝑠 and 𝑐 (𝑠𝑡 ) is a constraint violation
cost function. The goal is to find a valid trajectory 𝑠1:𝐻 , 𝑎1:𝐻 that
optimizes the cost 𝐽𝜃 while adhering to the 𝑐 (𝑠𝑡 ) constraint. In a
receding horizon control setting [29] we only use the first action
𝑎1 in the real system.

Here we adopt the model-based RL PETS [13] that uses an en-
semble of models with trajectory sampling (TS) to estimate the
epistemic uncertainty of the input data. Using an ensemble of
𝐵 neural networks parametrized with 𝜃𝑏 , we train the models
by minimizing the mean squared error (MSE) of loss function
L(𝜃 ) = E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1∈D𝑏 ) ∥𝑠𝑡+1 − 𝑓𝜃𝑏 (𝑠𝑡 , 𝑎𝑡 )∥. Algorithm 1 describe
the training pipeline for our MPC controller. The constraint vio-
lation cost function 𝑐 (𝑠𝑡 ), and the reward function 𝑟 (𝑠𝑡 ) can be
learned from data using any classification model, or using a known
cost function.

Algorithm 1 Model-based MPC with CDCEM
Require: Initial collected trajectoriesD, dynamics models, reward
model, action sequence decoder, CDCEM parameters; Initialize
dataset D with 𝑆 random seed episodes;
while Not converged do

for 𝑡 = 1, . . . ,𝑇 do
𝑎𝑡 ← CDCEM-solve(ℎ𝑠𝑡−1 )
{𝑟𝑡 , 𝑐𝑡 , 𝑠𝑡+1} ← 𝑒𝑛𝑣 .𝑠𝑡𝑒𝑝 (𝑎𝑡 )
Add {𝑟𝑡 , 𝑠𝑡 , 𝑎𝑡 } to D
if 𝑡 mod update-interval = 0 then

sample trajectories 𝜏 = [𝑟𝜏 , 𝑠𝜏 , 𝑎𝜏 ]𝐻𝜏=1 ∼
D from the dataset.

Compute the loss: L(𝜏, 𝑠𝜏 )
𝜃𝑡𝑟𝑎𝑛𝑠 ← grad-update(∇𝜃L(𝜏, 𝑠𝜏 ))
𝑧𝜏 ← argmax𝑧∈Z 𝐽𝜃 (𝑧; 𝑠𝜏 )
𝜃𝑑𝑒𝑐 ← grad-update(∇𝜃

∑
𝜏 𝐽𝜃 (𝑧𝜏 ))

end if
end for

end while

4.2 Constrained Differentiable Cross-Entropy
Algorithm

In order to solve the constrained optimization problem in Equa-
tion (2) we use constrained differentiable cross-entropy method
(CDCEM) described in Algorithm 2. Here we use Multi-Label Pro-
jection (LML) layer [5] described in Equation (4) which allows us to
implement differentiable top-𝑘 operation to select top trajectories
based on the task cost function and feasibility cost. We can com-
bine the two top-𝑘 operations with the weighted sum of reward
and constraint cost for each each using a linear opinion pool [14].
This provides a belief aggregation method that combines the deci-
sion based on cost and reward objective which in the simplest case
involves taking the weighted linear average of opinions:

I𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑗 = 𝛼I1, 𝑗 + (1 − 𝛼)I2, 𝑗 (3)

The 𝛼 denotes the weight associated with the reward objective
and 1 − 𝛼 is the weight associated with the cost objective respec-
tively. The weighting parameters can be set as a hyperparameter
or estimated during training,

ΠL𝑘 ( 𝑥𝜅 ) := argmin − 𝑥𝑇𝑦 − 𝜅𝑈𝑏 (𝑦)

subject to: 1𝑇𝑦 = 𝑘,

0 < 𝑦 < 1,

(4)

where𝑈 is binary cross-entropy function and 𝜅 is a hyperparam-
eter that will induce vanilla CEM when 𝜅 → 0. The derivative of
Equation (4) can be computed by implicitly differentiating the KKT
optimality conditions [5].

5 EXPERIMENTS
5.1 Experiment 1: Point Goal Environment
5.1.1 Problem Description. First, we evaluate our proposed safe
reinforcement learning algorithm in the OpenAI Safety Gym [34].
We use Safety Gym because (1) it uses an auxiliary cost function to
enforce safety requirements, and (2) state-of-the-art reinforcement
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Algorithm 2 Constrained DCEM (CDCEM) (𝑟, 𝑐, 𝑔𝜙 ;𝜅, 𝑁, 𝑘,𝑀)

for 𝑗 = 1 to𝑀 do
[𝑋 𝑗,𝑖 ]𝑁𝑖=1 ∼ 𝑔𝜙 𝑗

(·) ⊲ Sample 𝑁 points from the domain. Differentiate with reparameterization.
𝑣𝑟𝑒𝑤𝑎𝑟𝑑
𝑗,𝑖

= 𝑟 (𝑋 𝑗,𝑖 ) ⊲ Evaluate the reward objective function at those points.

𝑣
𝑠𝑎𝑓 𝑒𝑡𝑦

𝑗,𝑖
= 𝑐 (𝑋 𝑗,𝑖 ) ⊲ Evaluate the constraint objective function at those point.

I1, 𝑗 = ΠL𝑘
(
𝑣𝑟𝑒𝑤𝑎𝑟𝑑
𝑗,𝑖

𝜅 ) ⊲ Compute the soft top-𝑘 projection for reward objective.

I2, 𝑗 = ΠL𝑘
(
𝑣
𝑠𝑎𝑓 𝑒𝑡𝑦

𝑗,𝑖

𝜅 ) ⊲ Compute the soft top-𝑘 projection for constraint feasibility.
I𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑗 = 𝛼I1, 𝑗 + (1 − 𝛼)I2, 𝑗 ⊲ Compute the soft top-𝑘 combining prediction I1, 𝑗 and I2, 𝑗 .
Update 𝜙 𝑗+1 by solving the problem in Equation (1).

end for
Return: E[𝑔𝜙𝑀+1 (·)]

Figure 1: Point-Goal: Safety Gym environments for experi-
ment 1.

learning algorithms with benchmarked performance are available
in all environments. The Point-Goal Task (in Figure 1) requires the
robot to navigate to the designated green point with two actuators
for thrust and angle while avoiding hazards and vase.

The robot will receive a reward (𝑟𝑡 = 1) when it reaches the goal
and a cost (𝑐𝑡 (𝑠𝑡 ) = 1) when it violates the safety requirement.
Here we use the available official baseline methods provided in the
Safety Gym Environment, which are Constrained Policy Optimiza-
tion (CPO) [2] as a constrained reinforcement learning baseline
and cross-entropy based Model-Predictive Control (MPC-CEM) as
a model-based unconstrained baseline. We follow the metrics pro-
posed in the Safety Gym paper [34] which are episodic reward
and episodic cost, and the number of samples required to reach
convergence as a proxy for sample efficiency.

5.1.2 Implementation Details. We use the same hyperparameters
provided in the Safety Gym official benchmark for the CPO and
the same hyperparameters for both model-based (MPC-CDCEM
and MPC-CEM). We evaluate each algorithm with three different
seeds. For the dynamics models, we use a neural network with
three hidden layers with 64 neurons, ReLU activation, 512 batch
size, and the Adam optimizer with 1𝑒−1 learning rate. We train the
model for 50 epochs. We use a smaller neural network with two
hidden layers and 128 neurons, ReLU activation, and Adam opti-
mizer with a learning rate of 1𝑒−3 to predict the constraint violation
given. For MPC-CDCEM, we use a neural network as a decoder to
map embedded action from the latent planning horizon to a larger
planning horizon. For the decoder, we use a neural network with
two hidden layers and 256 neurons, Swish [33] activation, and the
Adam optimizer with 1𝑒−4 learning rate.

5.1.3 Results. Figure 2 and Figure 3 show the accumulated reward
and cost violation for the safety-gym point-goal task. The CPO
algorithm’s learning curve and violation cost are shown with a
horizontal line since the model-free algorithm requires an order
of magnitude more interaction (50 times) with the environment. It
can be seen that our proposed algorithm converges to a slightly
lower reward, but receives a significantly lower violation cost.

Table 1 compares the number of constraint violations during the
first 5 × 103 iterations. It can be seen that the number of violations
is significantly higher in the model-free case. Compared to the
two model-based approaches, Table 1 demonstrates that the MPC-
CDCEM incurs a lower cost while exploring the environment safely.

We further evaluate the effect of hyperparameter 𝛼 in the MPC-
CDCEM fused cost function on constraint violation. Figure 4 shows
that constraint violation decreases sharply when 𝛼 increases from
0 to 0.4. While a further increase in 𝛼 reduces the number of viola-
tions, it negatively influences the obtained reward.

Table 1: Constraint violations in 5000 iteration

Algorithm Constraint Violations SD

MPC-CEM 56.21 3.52
MPC-CDCEM 29.75 1.21

CPO 812.4 12.2
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Figure 2: SafePoint-Goal task learning curves Figure 3: Constraint violation cost

Figure 4: 𝛼 in fused cost function

5.2 Experiment 2: Microgrid Energy
Management System

5.2.1 Problem Description. One of the most critical constraints
for utilizing building thermal mass and energy flexibility in a mi-
crogrid is maintaining a satisfactory occupant comfort level while
minimizing energy consumption. A common approach to ensure
policy feasibility is to penalize the violations of thermal comfort,
but this does not guarantee the occupant’s comfort requirements. In
addition, it is also necessary to ensure the control strategies do not
violate physical operating constraints of the equipment or cause
premature equipment degradation. For example it is often desirable
to slowly ramp large fan motors to avoid large pressure fluctiations
in the duct systems, and it is also often desired to limit the cycling
of large equipment like chillers.

Here we evaluate our safe reinforcement learning algorithm on
a building-level microgrid energy management test-bed. The simu-
lation environment is implemented using the EnergyPlus model for
a large office building, PV system, wind turbine, inverters, and a
battery storage facility connected to the main grid. The additional

electricity can be bought from the grid if the renewable energy and
battery storage cannot meet the demand. The building model used
here is a large commercial office building with a Chicago weather
file. Cooling is provided to the building zones by chilled-water
variable-air-volume (VAV) air-handlers and cooling-only terminal
boxes. Zone heating is performed by electric resistance baseboard
heaters. The central plant features two centrifugal chillers, two
cooling towers, and water pumps. In this experiment, we control
the zone cooling set-points to maintain the zone temperature to
ensure occupants’ comfort while minimizing the electricity con-
sumption in the microgrid. The constraints here are to maintain a
satisfactory comfort level as measured by the zone Predictive Mean
Vote (PMV) index during the occupied hours and prevent excessive
switching of large chilled water plant equipment. PMV index values
range from −3 to +3, which describes the feeling from cold to hot,
respectively. Based on ASHRAE 55 the agent will violate comfort
constraints if PMV is outside the recommended limits (−0.5 and
0.5). The objective is described in Eq. (5).

max 𝐽 = −𝜆1𝐸ℎ𝑣𝑎𝑐,𝑡 − 𝜆2∥𝑢𝑡 ∥1
s.t. |𝑃𝑀𝑉𝑡 | ≤ 0.5, ∀𝑡 ∈ {occupied hours}

chiller-cycles ≤ 2per day
(5)

5.2.2 Implementation Details. We use the same hyperparameter
for both baselines and MPC-CDCEM over the weather file from
May 2018 to September 2018. The EnergyPlus model uses a 10-min
control time step with a planning horizon of 𝐻 = 24. The same
hyperparameters are used for the dynamics model, constraint cost
prediction model, and the decoder neural network, as mentioned in
experiment 1. The decoder maps the latent horizon length of𝐻𝑙 = 4
to the task horizon 𝐻 = 24. We train the induced MPC policy by
iterating over-collected samples for 20 epochs with a batch size
of 256. We follow the metrics proposed in the Safety Gym paper
[34] which are episodic reward and episodic cost, and the number
of samples required to reach convergence as a proxy for sample
efficiency. We use the same hyperparameters provided in the Safety
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(b) Chiller cycle experiment

Figure 5: Learning curves for thermal comfort and chiller
cycling constraint experiments.

Gym official benchmark for the CPO and the same hyperparameters
for both model-based MPC (MPC-CDCEM and MPC-CEM).

5.2.3 Results. Figure 5 and 6 show the learning curve and reward
and constraint violation for the occupancy comfort and chiller cycle
constraint experiments. The figures show MPC-CDCEM quickly
learns the underlying constraint function and converges to a re-
ward that is inline or slightly lower than MPC-CEM and CPO. This
observation is reasonable since the agent can ignore the constraint
and maximize the task reward.

After training the agent, the trained agent directly operated in
a simulation environment with the Washington D.C. weather se-
quence on the first week of June. Table 2 and Table 3 highlight the
HVAC electric use, reward, and constraint violation during a week-
day in the testing period. Compared to other methods, the reward
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Figure 6: Cost trend for thermal comfort and chiller cycling
constraint experiments.

and constraint violations show that MPC-CDCEM achieves rewards
comparable to MPC-CEM and CPO while constraint violations are
always less than other methods. The proposed MPC-CDCEM agent
(average over three random seeds) saves 12.3% energy compared to
the default nighttime setup (NSU) and consumes approximately 1%
more compared to MPC-CEM.

Figures 7 and 8 show the simulation results for a weekday dur-
ing the testing period in order to compare the NSU, MPC-CDCEM,
MPC-CEM, and CPO indoor thermal comfort and zone tempera-
tures. The zone temperature represents the weighted average zone
temperature based on zone area, and the PMV is the occupancy
weighted average PMV. It can be seen that MPC-CDCEM is try-
ing to maintain the zone temperature at a temperature that does
not violate the comfort constraint. MPC-CEM and CPO are more
unstable than MPC-CDCEM, which resulted in violations of the
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Table 2: Testing period result for thermal comfort experi-
ment.

Constraint
Case Energy Use [kWh] Reward Violation

NSU 31,320 -4,186 0
MPC-CEM 27,151 -3,811 3

MPC-CDCEM 27,429 -3,804 0
CPO 27,109 -3,834 4

Table 3: Testing period result for chiller cycling experiment.

Energy Use Constraint Violation

Case [kWh] Reward Chiller Comfort

NSU 31,320 -4,186 6 0
MPC-CEM 27,285 -3,912 8 0

MPC-CDCEM 27,394 -3,888 4 0
CPO 27,147 -3,907 7 2

comfort constraints in the morning and afternoon. In the chiller
cycle experiment, the MPC-CDCEM agent learns to maintain a
lower temperature in the morning, possibly preventing excessive
switching of chillers during the day. This confirms that the proposed
algorithm observes the constraints during policy learning.
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Figure 9: 𝛼 in fused cost function.

We further evaluated the effect of fused cost function parameter
𝛼 as show in Figure 9, which shows that a good balance between re-
ward and cost constraint tends result in good compromise between
cost and safety.

6 CONCLUSION
In this study, we present an effective constrained RL algorithm
formulated under the Constrained Markov Decision Process frame-
work with no additional assumption on the system dynamics. The

proposed algorithm induces a differentiable control policy that ad-
dresses the objective mismatch problem and enables an end-to-end
learning process while enforcing constraint feasibility. First, we
evaluated our algorithm in the Safety Gym environment, which
showed superior constraint satisfaction while maintaining task per-
formance compared to other constrained RL algorithms. Next, we
evaluated MPC-CDCEM in a microgrid environment to minimize
energy consumption while ensuring occupants’ thermal comfort
and preventing excessive chiller cycles. In both cases, MPC-CDCEM
achieved better constraint satisfaction while maintaining good re-
ward performance compared to other baseline algorithms.
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Figure 7: Performance evaluation for thermal comfort experiment.
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