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Abstract 

Assessing electricity consumption of chilled-water 

cooling plants is essential for near-optimal operation and 

carbon emission reduction. The goal of this study is to 

develop an efficient chiller sequencing control strategy 

for different building operating conditions.  To that end, 

this study aims to develop three Random Forest (RF) 

chiller models for predicting chiller power consumption 

and two more efficient chiller sequencing control 

strategies for a 1.3 million ft2 high-rise commercial 

office building located in New York City. Chiller 

cooling load, chiller power consumption, and ambient 

wet bulb temperature were logged at 15-min intervals in 

May–September 2019, and used to train RF models for 

analyzing the two more efficient chiller sequencing 

strategies. The average value of mean absolute 

percentage error (MAPE) and root mean squared error 

(RMSE) for all three RF chiller models are 5.3% and 30 

kW, respectively, for the validation dataset, which 

confirms a good agreement between measured and 

predicted values. Results of this study provide additional 

insights on how to accurately predict the total chiller 

power consumption of cooling plants under different 

chiller sequencing control strategies. 

Introduction 

Commercial Building Energy Consumption Survey 

(CBECS) indicates that chillers provide cooling in more 

than half of the commercial office building floor spaces 

in the U.S. (2012 CBECS Survey Data, 2015). In 

addition, chiller systems are responsible for providing 

cooling for more than half of the commercial buildings 

with areas greater than 9,000 m2 (∼100,000 ft2) (Rizi and 

Heidarinejad 2022). To address the need of improving 

energy efficiency of operation of chillers, research 

studies investigate different chiller sequencing 

approaches. The recent version of ASHRAE Guideline 

36 includes rules for the variable speed centrifugal 

chiller sequencing strategies, which includes stage 

up/down part load ratio (SPLR_UP,DN) and the 

temperature difference between condenser water return 

and chilled water supply temperature (lift) parameters 

(“ASHRAE Guideline 36” 2021). One study has 

evaluated the performance of three different chiller 

sequencing control strategies in a super tall building 

from aspects of chiller switch on/off number, electrical 

peak demand, and overall energy consumption in one 

week (Sun et al. 2013). Another chiller sequencing 

strategy utilized the hybrid predictive control to optimize 

sequencing of chillers using a cooling load prediction as 

a corrective measure to reduce the unnecessary 

sequencing action (Liao and Huang 2019). Several 

researchers deployed multivariate linear regression 

(MLR) and artificial neural network (ANN) as black-box 

modeling methods for simulation of a chiller system (Lee 

et al. 2012; Wei et al. 2014; Labus et al. 2013). There are 

big challenges to optimize chiller sequencing control 

strategies because of different parameters including 

operating parameters, chiller load, cooling tower 

parameters and weather conditions. However, selecting 

accurate modelling methods for the chiller sequencing 

needs to consider the importance of each variable and 

their contribution to the overall performance of a chiller 

system, as well as the ease of application and 

computational time. In this regard, developing empirical 

models was selected here because of accessibility to 

required data, superiority in model implementation and 

prediction accuracy. 

The empirical modeling compared to the engineering-

based approach is more practical in energy prediction of 

existing buildings because of accessibility to required 

data, such as building energy data, environmental data, 

and occupancy data. Also, results have proven that 

empirical modeling outperforms engineering-based 

modeling when the appropriate model is selected and the 
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learning algorithm is chosen properly (Neto and Fiorelli 

2008). However, some of the empirical modeling, e.g. 

Decision Tree and ANN, may introduce significant 

variations in the output due to small changes made in the 

input data due to the instability issues (Breiman 1996). 

As a result, the model accuracy for prediction 

dramatically decreases. Moreover, ANN models don’t 

identify the relationship between the input and output 

variables explicitly, while the MLR models can identify 

the correlation between the input and output variables by 

regression coefficients. The MLRs models accuracy 

highly depends on which input variables and their 

multivariate terms are included. The degree of input 

variables may also affect the accuracy. Therefore, 

examining the optimum order and combination of input 

variables to predict the outputs with the highest accuracy 

needs some effort. To overcome the instability of the 

learning algorithm as well as to improve prediction 

accuracy and identify variable importance a more 

advanced data mining technique called ensemble 

learning was introduced in the early 1990s (Hansen and 

Salamon 1990).  

Random Forest (RF) models, as an ensemble learning 

model partition input variables utilizing decision tree 

methods to identify importance of variables and to 

predict output variables with high accuracy. This model 

also works well when handling outliers and noise in the 

dataset (Liaw and Wiener 2002). One study showed that 

RF models could outperform classical linear regression 

in predicting heating and cooling loads of residential 

buildings (Tsanas and Xifara 2012). Also, RF, Support 

Vector Regression (SVR), and Regression Tree (RT) 

models have been applied for predicting hourly building 

energy. The comparison of the results confirmed the 

superiority and feasibility of homogeneous ensemble 

learning of RF models in building energy prediction 

(Wang et al. 2018). Moreover, some researchers studied 

how the RF model can identify important variables. This 

model was used to identify influential features on the 

regional energy use intensity (EUI) of residential 

buildings (Ma and Cheng 2016). Also, the RF model 

could analyze the importance of operating variables and 

predict the Coefficient of Performance (COP) of an air-

cooled chiller with high accuracy (Yu et al. 2017).  

Although many attempts have been made to develop 

chiller model and chiller sequencing strategy in chiller 

plants, developing high-accurate chiller model when 

limited data is available is still not well discussed. Also, 

subject to real world measurement’s uncertainty and 

noise, it is not always known what features will lead to 

the best prediction model. Therefore, selecting high 

accurate modelling methods that identify the importance 

of each input variable and its contribution to the overall 

performance of a chiller is essential. 

This study aims to (i) develop data-driven chiller models, 

(ii) investigate variables that are importance to chiller

electricity consumption predictions, and (iii) predict the

power consumption of the chillers for two more efficient

chiller sequencing strategies of the cooling plant of a

high-rise commercial building located in New York

City. The experimental set up of the chillers, RF model

development for each chiller, chiller plant actual data,

and the results of feature importance technique for each

model are discussed in this paper.

Method of study 

Description of the chillers 

The central water-cooled chiller plant is comprised of 

four centrifugal electric variable speed chillers with rated 

capacity of 5,627 kW (1,600 tons) for chillers 1 and 2, 

and 3,517 kW (1,000 tons) for chillers 3 and 4 to provide 

chilled water for two air handling units. Chiller 3 is a 

magnetic-bearing chiller and the building facility 

managers usually operate it only during mild Spring and 

Fall days; thus, it has not been considered in this analysis 

since this study focuses on the warmer June-September 

weeks of the 2019 cooling season. The logged data 

during the 2,820 hours of those weeks indicates that 

chillers 1, 2 and 4 were working individually 27%, 23% 

and 18% of total working hours, respectively. Also, 

when working in combination, chillers 2 and 4 and 

chillers 1 and 4 were the most frequent contribution at 

10.5% and 4.5%, respectively. 

Random Forest (RF) and model development 

RF uses random sets of input variables to build an 

ensemble of decision trees and is one of the important 

methods for classification and regression problems. 

Many studies confirmed that this model outperforms the 

single decision tree models in terms of overcoming 

issues of overfitting and model accuracy by aggregating 

the predictions made by many individual decision trees 

(Breiman 2001).  

The Random Forests can be used to rank the importance 

of variables in a regression or classification problem. 

The first step in measuring the variable importance in a 

data set 𝐷𝑛 = {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑛  is to fit a random forest to the

data. During the fitting process the out-of-bag error for 
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each data point is recorded and averaged over the forest 

(errors on an independent test set can be substituted if 

bagging is not used during training). To measure the 

importance of the j-th feature after training, the values of 

the j-th feature are permuted among the training data and 

the out-of-bag error is again computed on this perturbed 

data set. The importance score for the j-th feature is 

computed by averaging the difference in out-of-bag error 

before and after the permutation over all trees. The score 

is normalized by the standard deviation of these 

differences. Features which produce large values for this 

score are ranked as more important than features which 

produce small values. The built-in feature_importances_ 

attribute in the RF package ranks the importance of the 

input variables on the predicted variable. 

This study used Jupyter Notebook (version 5.7.4) in the 

Anaconda Navigator platform for developing the RF 

model. The Sklearn Random Forest Regressor package 

was called to execute the algorithm. Measured data for 

each chiller were split into the training and validation 

datasets by randomly sampling 75% of the dataset for 

training the model and 25% for testing the model. All the 

data was standardized between 0 to 1 since features with 

a wider range can affect the stability of the model during 

the training process. Therefore, data standardization is a 

significant step for many machine-learning estimators 

(Mousavi et al. 2018).  

The RF model accuracy was measured by considering 

two frequently-used prediction accuracy evaluation 

indices which are: the Root Mean Squared Error 

(RSME), and the Mean Average Percentage Error 

(MAPE) given by Equations (1) and (2). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
× ∑ (𝑥𝑡 − 𝑦𝑡)2𝑛

𝑡=1  (1) 

𝑀𝐴𝑃𝐸 =
1

𝑛
× ∑ |

𝑥𝑡−𝑦𝑡

𝑦𝑡
| × 100%𝑛

𝑡=1           (2) 

where n, 𝑥𝑡 and 𝑦𝑡  represent the sample size, the

predicted value and the actual value, respectively. RMSE 

represents the sample standard deviation of the residuals 

between predicted and measured data. MAPE is a 

statistical indicator that explains the accuracy of the 

prediction by comparing the residual with the measured 

data and mostly expressed in percentage (Wang et al. 

2018). Development and comparison of new staging 

strategies 

This study conducted five steps to compare the existing 

operating strategy used by the building operators to two 

new and more efficient chiller sequencing strategies 

suggested by the RF model as follow: 

• Step 1: Develop two new chiller sequencing

strategies for the chiller plant based on the

Chillers 1, 2 and 4 and combinations of them.

• Step 2: Apply chiller models for the existing

strategy as well as the new strategies 1 and 2 at

each time stamp.

• Step 3: Predict the power consumption of

chillers sequencing strategies based on the

chiller models at each time stamp.

• Step 4: Sum the chiller power consumptions

calculated at each timestamp to determine the

total chillers power consumption for all the

strategies at each period.

• Step 5: Rank the new chiller sequencing

strategies by calculating the chiller power

consumption reduction compared to the

existing sequencing strategy.

Results 

The measured time series data has been collected during 

summer 2019 from May 1st to mid-September at a 15-

min interval, totaling 15,286 recorded data. The number 

of measured data were 5,684 for chiller 1, 6,156 for 

chiller 2 and 5,337 for chiller 4. Three RF chiller models 

were developed for chiller 1 (model A), chiller 2 (model 

B) and chiller 4 (model C). This study considered

normalized chiller cooling load, normalized wet bulb

temperature, day of week, and time of a day as input

parameters and chiller power consumption as an output

parameter. The importance of input variables on the

prediction of chiller power consumption was ranked

based on the built-in feature_importances_attribute in

the RF package. Results show that for models A, B and

C the chiller cooling load and wet bulb temperature are

the most important features for determining chiller

power consumption. The chiller cooling load has an

importance of 67%, 74% and 66% and wet bulb

temperature has an importance of 31%, 24% and 31% for

models A, B and C, respectively. The importance of

other features compared to these features was negligible.

The chiller models A, B and C were applied to the 

validation dataset to compare the result of predicted data 

with the measured data. Figure 1(a), Figure 1(b) and 

Figure 1(c) have depicted the predicted power 

consumption vs. actual power consumption of the 

validation dataset using model A, B, and C, respectively. 
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The blue line represents a perfect regression. The closer 

the points are to the line, the more accurate the model is. 

The blue line can also be used to understand if the model 

is under or over predicting. If points are above the blue 

line, the model is over predicting; if points are below the 

blue line, the model is under predicting. Also, to measure 

the accuracy of the model, the RMSE and MAPE for 

each model is presented in Table 1. The RMSE for model 

A, model B and model C are 38 kW, 31.2 kW and 21.9 

kW, respectively. Also, the MAPE for model A, model 

B and model C would be 5.9%, 4.9% and 5.2%. The 

number of decision trees for the models are 100.  

Table 1. Chiller model specification 

Chiller 

model 

Number 

of  

decision 

trees 

Number of data 

Model 

Evaluation 

Indices 

Training Testing 
RMSE 

(kW) 

MAPE 

(%) 

Model A 

(Chiller 1) 
100 4263 1421 38.7 6.1 

Model B 

(Chiller 2) 
100 4617 1539 31.0 4.8 

Model C 

(Chiller 4) 
100 4003 1334 21.8 5.1 

The accuracy of the chiller models would normally 

decrease when the chiller model is examined by the 

unseen data due to the overfitting issue. In this study, to 

evaluate the level of overfitting, and provide an unbiased 

sense of model effectiveness, two weekday periods of 

the 2019 cooling season (07/15/2019 to 07/20/2019 and 

07/22/2019 to 07/27/2019) in New York City with 

average wet bulb temperature of 73℉ and 68℉ were  

selected as an unseen dataset which were not used to 

build or tune the models.Figure 2 depicts the wet bulb 

temperature variation in New York City during cooling 

season 2019. The studied area is limited by the two-

orange dash line.  

(a) (b) 

(c) 

Figure 1. Plots of the predicted chiller power 

consumption against the actual power consumption of 

validation dataset for (a) model A (b)model B and (c) 

model C 

Figure 2. The wet bulb temperature variation in New York City during the cooling season 2019
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(a) 

(b) 

Figure 3. Total chiller power consumption (kW) during weekday period (a) Period 1, and (b) Period 2

The models A, B and C were applied on the measured 

data for periods 1and 2 as an unseen dataset. The RMSE 

and MAPE values for these two periods were calculated 

using Equations 1 and 2 based on the measured and 

predicted chiller power consumption at each timestamp. 

The RMSE for periods 1 and 2 are 55 kW and 58 kW, 

respectively. Also, MAPE values for periods 1 and 2 are 

4.8% and 4.9%, respectively.  Therefore, by considering 

the min, max and average values of measured and 

predicted chiller power consumption as indicated in 

Table 3 as well as calculated RMSE and MAPE, there 

are a good agreement between measured and predicted 

data in these two periods. Figure 3(a) and Figure 3(b) 

compare the measured time-series total chiller power 

consumption with predicted one for the periods 1 and 2 

respectively. In these periods as shown in Figure 4, from 

07/15/2019 to 07/20/2019 (“Period 1”), chillers 1 and 2 

are working 22 and 14 hours individually. In 

combination mode, chillers 1 and 2, 1 and 4, and 2 and 4 

are working about 20, 49 and 14 hours, respectively. 
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Also, from 07/22/2019 to 07/27/2019 (“Period 2”), 

chillers 2 and 4 are working 40 and 5 hours individually. 

Chillers 1 and 2 and chillers 2 and 4 are working about 

16 and 44 hours, respectively. in combination. 

According to the five steps described in the previous 

section, the results of two developed chiller control 

strategies were explained as follows.  

Step 1. As shown in Figure 4, two new and more efficient 

chiller sequencing strategies were developed based on a 

2019 cooling season graphical analyses of electric input 

ratio (EIR) vs chiller cooling load for each of the three 

chillers. The Figure 4shows the different operating 

frequencies associated with each chiller scheme mode. 

Importantly, the graphical analysis identified efficient 

and inefficient areas of each chiller’s historical 

operation. A 10% dead-band was added to remove 

additional cost related to the excessive switching off/on 

of the chillers. Strategy 2 simply lowers the efficient 

chiller operating ranges adopted in Strategy 1.  Note also 

that Strategies 1 and 2 do not include chiller scheme 

modes that start with the smaller chiller 4.  

Chiller EIR was calculated by dividing chiller power 

consumption divided by provided chiller cooling load 

(Ton) at each time stamp and was considered as an index 

for the chiller efficiency. Table 2 summarizes the 

thresholds used in the current chiller sequencing 

strategy, as well as for sequencing strategies 1 and 2. 

Step 2. According to the chiller scheme mode at each 

timestamp, models A, B and C (separately or in 

combination) were applied.  

Step 3. The normalized wet bulb temperature and 

normalized chiller cooling load at each timestamp were 

considered as input variables for models A, B and C. The 

applied model(s) predict the chiller power consumption 

as an output parameter. 

Step 4. To compare the power consumption of chillers in 

different strategies, the summation of power 

consumption was calculated over the periods 1 and 2 for 

each strategy. Table 3 presents the predicted sum, 

average, min and max value of chiller electricity 

consumption for each strategy at each period. 

Table 2. Threshold of each chiller sequencing control 

strategy 

Chiller sequencing 

control strategy 

Chiller 

cooling load 

(ton) 

Chiller scheme 

mode 

Current strategy 

[400-1100] Chiller 4 

[400-1400] Chiller 1/2 

[1300-2300] 
Chiller 1/2&4, 

4&1/2 

[1700-2700] Chiller 1&2 

Strategy 1 

[400-900] Chiller 4 

[800-1400] Chiller 1/2 

[1250-1600] Chiller 1/2&4 

[1450-2700] Chiller 1&2 

Strategy 2 

[400-900] Chiller 4 

[800-1250] Chiller 1/2 

[1100-1900] Chiller 1/2&4 

[1700-2700] Chiller 1&2 

Figure 4. Chiller sequencing strategies specification during Period 1 and Period 2 
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Table 3. The predicted results of different chiller sequencing strategies for Period 1and Period 2 

Time period 

Chiller power 

consumption 

(kW) 

Measured 

data 

Predicted data Power 

consumption 

reduction(kW) 
Current 

strategy 
Alternative 1 Alternative 2 

Period 1 

Sum 369,771 369,989 378,020 365,510 

(4,479) 
Average 782 784 799 772 

max 1,757 1,519 1,521 1,529 

min 295 269 361 250 

Period 2 

Sum 319,164 318,689 322,158 316,636 

(2,053) 
Average 672 670 678 666 

max 1,396 1,270 1,316 1,319 

min 280 305 245 241 

(a) 

(b) 

Figure 5. The comparison of predicted data for the strategies 1 and 2 with the current strategy for (a)Period 1 and 

(b)Period 2
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Step 5. To evaluate the performance of each strategy, the 

total chiller power consumption of strategies 1 & 2 

during periods 1 and 2 was compared with the actual 

measured chiller power consumption in terms of power 

consumption reduction percentage as indicated in 

Equation 3. The results were summarized in Table 3. 

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (%) = 

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝑖)−𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝑖)
× 100    𝑓𝑜𝑟 𝑖 = 1, 2, … , 5    (3) 

where Strategy (i) denotes the summation of chiller 

power consumption for ith strategy at the specific period. 

Figure 5 (a) and Figure 5(b) visualizes these comparisons 

between strategies 1, 2 and current strategy as a time 

series for periods 1 and 2, respectively.  

Discussion 

The conventional chiller sequencing control strategies 

such as return chilled water temperature-based control 

and cooling load-based control modeled for high rise 

commercial buildings require detailed information from 

the old existing chiller plants which mostly are not 

accessible. To address these limitations this study 

introduces a data driven modeling approach as a solution 

for developing three random forest chiller models, model 

A, model B and model C to calculate the chillers power 

consumption. As shown in  

Figure 1, the results of predicted chiller power 

consumption of the validation dataset agree well with the 

measured chiller power consumption. Also the perfect 

blue regression lines in Figure 1(a), Figure 1(b), and 

Figure 1(c) demonstrate  how well the power 

consumption data has been spread around the blue line. 

Figure 3(a) and Figure 3(b) show how the chillers 

models A, B and C perform well on the unseen data 

during period 1 and 2. In some areas of the plots, the 

deviation between the predicted data and measured data 

are higher which was indicated by the red circle. These 

areas represent the state when chillers are in combination 

mode to satisfy the building cooling load. Therefore, this 

study entails some limitations in terms of chiller power 

consumption prediction when chillers are working 

together. In the future work, we aim to address these 

limitations by considering the chiller mode operation as 

an input parameter. Also, the time series wetbulb 

temperature in periods 1 and 2 follows the trend of 

timeseries chiller power consumption. The feature 

importance technique also confirms this fact that the wet 

bulb temperature with average contribution of 29% is 

one of the important factors for determining the chiller 

power consumption.  

Figure 5 (a) and Figure 5(b) clearly show that strategy 2 

has placed below the current strategy and strategy 1 most 

of the time during periods 1 and 2, while strategy 1 

compares to the current strategy has located above the 

current strategy. The amount of power consumption 

reduction compared to current strategy calculated from 

Equation (3) demonstrates that strategies 2 by reduction 

of 4,479 kW (1.2%) and 2,053 kW(0.7%) for periods 1 

and 2 ,respectively can be introduced as a potential 

strategy to the chiller plant.  

Conclusion 

This study considers the Random Forest (RF) method to 

predict power consumption of water-cooled variable 

speed centrifugal chillers under two different chiller 

sequencing strategies in a high-rise commercial office 

building with building area of about 1,300,000 ft2 located 

in New York City.  

Chiller cooling load, chiller power consumption, and wet 

bulb temperature were logged at a 15-min interval from 

May 2019 to Mid-September 2019. Three RF chiller 

models are developed for Chiller 1(model A), Chiller 2 

(model B) and Chiller 4 (model C) based on collected 

data. The input parameters for the models are normalized 

chiller cooling load, normalized wet bulb temperature, 

day of week, time of a day as input parameters and the 

output parameter is normalized chiller electricity 

consumption. This study used feature importance 

technique to identify the most influential parameters on 

the chiller power consumption. Among the input 

features, the chiller cooling load and wet bulb 

temperature with importance of about 70% and 30% for 

models A, B and C, respectively, considered as rank 1 

and 2 for predicting chiller power consumption. The 

Root Mean Squared Error (RMSE) and Mean Average 

Percentage Error (MAPE) for each model suggest that 

developed models are predicting well.  

To evaluate the level of overfitting of both models, the 

recorded data for two weekdays’ periods of cooling 

season 2019 (07/15/2019 to 07/20/2019, and 07/22/2019 

to 07/27/2019) in New York City was introduced to the 

models as an unseen dataset. The RMSE and MAPE 

were calculated during these two periods and the results 

confirmed that three models are predicted with a high 

confidentiality. These models were applied to compare 

two feasible chiller sequencing strategies during these 

periods with incorporation of Chillers 1, 2 and 4 and 
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combination of them based on predicted chiller power 

consumption at each time stamp (15-min interval). The 

results indicate that chiller sequencing control strategy 2 

by reduction of 1.2% and 0.7% of total chiller’s power 

consumption compared to the current strategy in period 

1 and 2, respectively can be considered as a potential 

strategy to the chiller plant. To make confidence of 

reporting smaller savings estimates for different chiller 

sequencing strategies using RF models it needs to 

provide reasonable estimates of prediction uncertainty 

bands. Also, applying some feature engineering 

techniques for training the chiller models may improve 

the chiller’s model performance. This will constitute the 

future research work of the authors.  
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